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The role of thermal fluctuations in the conformational dynamics of a single closed filament is studied. It is
shown that, due to the interaction between charges and bending degrees of freedom, initially circular aggre-
gates may undergo transformation to a polygonal shape. The transition occurs in the cases of hardening and
softening charge-bending interaction. In the former case the charge and curvature are smoothly distributed
along the chain, while in the latter spontaneous kink formation is initiated. The transition to a noncircular
conformation is analogous to a phase transition of the second kind.
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I. INTRODUCTION

Conformational flexibility is a fundamental property of
biological systems which determines their functioning �1–3�.
Even modest conformational changes modify long-range
electronic interactions in oligopeptides �4�; they may remove
steric hindrances and open the pathways for molecular mo-
tions that are not available in rigid proteins �5�. The DNA
conformation in the nucleosome core is crucial for gene rep-
lication, transcription, and recombination �6�. Recent DNA
cyclization experiments �7–9� have shown the facile in vitro
formation of DNA circles shorter than 30 nm �100 base
pairs� which is even shorter than the commonly accepted
persistence length 50 nm �150 base pairs�. This means that
the wormlike chain model does not work for such short DNA
molecules, and to explain this phenomenon one should allow
local softenings of DNA which facilitates disruptions �kinks�
in the regular DNA structure �10–12�. According to �12� the
kink formation is due to strong DNA bending while in �9� it
is assumed that the softening originates from Watson-Crick
base-pair breathing. An alternative approach which allows
one to avoid kinking was proposed in Ref. �13�, where a
class of models with nonlinear DNA elasticity was intro-
duced. It was shown in �13� that a “subelastic chain” model,
in the frame of which the bending energy is proportional to
the absolute value of curvature, can reproduce the main fea-
tures of Cloutier and Widom’s experiments �7�.

Quite recently a simple, generic model for charge-
curvature interactions on closed molecular aggregates was
proposed �14�. It was shown that the presence of charge
modifies �softens or hardens� the local chain stiffness. It was
found that due to the interaction between charge carriers and
the bending degrees of freedom the circular shape of the
aggregate may become unstable and the aggregate takes the
shape of an ellipse or, in general, of a polygon. It was shown
also that when the charge-curvature interaction leads to soft-

ening the local chain stiffness kinks spontaneously appear in
the chain.

These results were obtained by using the mean-field ap-
proach where thermal fluctuations are ignored and strictly
speaking, this approach is valid only for zero temperature. In
the case of finite temperature, the interaction with environ-
ment and thermal fluctuations have to be considered.

The aim of this paper is to extend the results of Ref. �14�
to the case of finite temperature. We study the charge-
induced conformational transformations of closed molecular
aggregates in the presence of thermal fluctuations which we
model in the frame of Langevin dynamics. The paper is or-
ganized as follows. In Sec. II we describe the model. In Sec.
III we present an analytical approach to the problem. In Sec.
IV we display the results of numerical simulations and com-
pare with the analytical results. In Sec. V we discuss some
concluding remarks.

II. THE MODEL

We consider a polymer chain consisting of L units �for
DNA each unit is a base pair� labeled by an index l, and
located at the points r�l= �xl ,yl�, l=1, . . . ,L. We are interested
in the case when the chain is closed; therefore we impose the
periodicity condition on the coordinates,

r�l = r�l+L. �1�

We assume that there is a small number of mobile carriers
�electrons, holes in the case of DNA, protons in the case of
hydrogen-bonded systems� on the chain. The Hamiltonian of
the system can be presented as the sum

Htot = H + Hstoch. �2�

The first term in this equation is the Hamiltonian of an iso-
lated filament introduced in Ref. �14�,

PHYSICAL REVIEW E 78, 051908 �2008�

1539-3755/2008/78�5�/051908�10� ©2008 The American Physical Society051908-1

http://dx.doi.org/10.1103/PhysRevE.78.051908


H = Ub + Us + Hel + Hel-conf. �3�

Here

Ub =
k

2�
l

�l
2

1 − �l
2/�max

2 �4�

is the bending energy of the chain, where

�l � ���l − ��l−1� = 2 sin
�l

2
�5�

determines the curvature of the chain at the point l. Here

��l =
r�l+1 − r�l

�r�l+1 − r�l�
�6�

is the tangent vector at the point l of the chain, �l is the angle
between the tangent vectors ��l and ��l−1, and k is the elastic
modulus of the bending rigidity �spring constant� of the
chain. The term �l

2 /�max
2 in Eq. �4� gives the penalty for too

large bending deformations. Here the parameter �max
=2 sin��max /2� is the maximum local curvature with �max
being the maximum bending angle. The second term in Eq.
�3�,

Us =
�

2 �
l

��r�l − r�l+1� − a�2, �7�

determines the stretching energy with � being an elastic
modulus of the stretching rigidity of the chain and a is the
equilibrium distance between units �in what follows we as-
sume a=1�. We take the simplest theoretical model for
charge carriers, a nearest neighbor tight binding Hamil-
tonian, in the form

Hel = J�
l

��l − �l+1�2, �8�

where �l is the wave function of the carrier localized at rl
and J measures the carrier hopping between adjacent sites.
The last term in Eq. �3� represents the charge-curvature in-
teraction. In the small-curvature limit it has the form

Hel-conf = −
1

2�
l

���l�2��l+1
2 + �l−1

2 �; �9�

here � is the coupling constant. Combining Eqs. �4� and �9�,
we notice that the effective bending rigidity changes close to
the points where the electron �hole� is localized. For positive
values of the coupling constant �, there is a local softening
of the chain, while for � negative there is a local hardening
of the chain.

The quantity

� �
1

L
�

l

��l�2 �10�

gives the total density of charge carriers that can move along
the chain and participate in the formation of the conforma-
tional state of the system. The second term in Eq. �2� de-
scribes the interaction of the filament with a fluctuating en-
vironment,

Hstoch = �
l

r�l · R� l�t� , �11�

where the stochastic forces R� l�t�= (Xl�t� ,Yl�t�) are the Gauss-
ian white noise,

�Xl�t�	 = �Yl�t�	 = 0,

�Xl�t�Xl��t��	 = �Yl�t�Yl��t��	 = 2D	ll�	�t − t�� ,

�Xl�t�Yl��t��	 = 0, �12�

with D the standard deviation.
To analyze the evolution of the shape of the filament, it is

convenient to introduce the radius-of-gyration tensor I as in
Refs. �15,16�. Its components are

Ixx�t� =
1

L
�

l

�xl�t� − xc�t��2,

Iyy�t� =
1

L
�

l

�yl�t� − yc�t��2,

Ixy�t� =
1

L
�

l

�xl�t� − xc�t���yl�t� − yc�t�� , �13�

where

„xc�t�,yc�t�… =
1

L
�

l

„xl�t�,yl�t�… �14�

is the center-of-mass coordinate. The square roots of the two
eigenvalues Rq=
Iq, q=1,2, of the tensor I give the two
principal radii of the system. They express the sizes of the
filament along the major and minor axis. As is seen from
Eqs. �13� the eigenvalues have the form

I1,2 =
1

2
��Ixx + Iyy� 
 
�Ixx − Iyy�2 + 4Ixy

2 � . �15�

The indices 1 and 2 correspond to the � and � signs, re-
spectively. To characterize the shape of the conformation it is
convenient to introduce the quantity

A = I1 − I2 � 
�Ixx − Iyy�2 + 4Ixy
2 , �16�

defined as the “aspherity” �16�. It characterizes the shape’s
overall deviation from circular symmetry, which corresponds
to A=0.

III. ANALYTICAL APPROACH

The aim of this section is to develop an analytical ap-
proach, which provides a better insight into the physical
mechanism of conformational transformations induced by
the charge-curvature interaction in the fluctuating media. We
will assume that the characteristic size of the excitation is
much larger than the lattice spacing and replace �l and r�l by
the functions ��s , t� and r��s , t�, respectively. Here the ar-
clength s is the continuum analog of l. We assume that the
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chain is inextensible, and this assumption is expressed by the
constraint

��sr��2 = 1, �17�

which is automatically taken into account by choosing the
parametrization

�sx�s� = sin ��s�, �sy�s� = cos ��s� , �18�

where the angle ��s� satisfies the periodicity condition of Eq.
�1�,

��s + L� = 2 + ��s� , �19�

�
0

L

cos ��s�ds = �
0

L

sin ��s�ds = 0. �20�

In the frame of the parametrization �18�, the shape of the
chain is determined by the equations

x�s� = �
0

s

sin ��s��ds�, y�s� = �
0

s

cos ��s��ds�. �21�

In the continuum limit the curvature �5� takes the form
��s�= ��s

2r��s��, which is given by

��s� = �s� . �22�

The continuum version of the total Hamiltonian of the sys-
tem can be written as the sum

Htot = H + Hstoch�t� , �23�

where

H = �
0

L �J��s��2 +  k

2
− ���2����s��2�ds �24�

is the analog of the Hamiltonian �3� and

Hstoch�t� = �
0

L

�X�s,t�x�s,t� + Y�s,t�y�s,t��ds �25�

gives the interaction of the chain with the fluctuating envi-
ronment �11� in the continuum limit. The stochastic forces

R� �s , t�= (X�s , t� ,Y�s , t�) are the continuum version of the
forces Xl�t� and Yl�t�. They obey the relations

�X�s,t�X�s�,t��	 = �Y�s,t�Y�s�,t��	 = 2D	�s − s��	�t − t�� ,

�X�s,t�Y�s�,t��	 = 0. �26�

We will restrict our analysis to the case when the filament
shape only slightly deviates from the circle. Therefore in the
derivation of the Hamiltonian �24� we can neglect the term
�2 /�max

2 in the denominator of Eq. �4�.
By using the Madelung transformation

��s,t� = 
��s,t�ei��s,t� �27�

where ��s , t� is the charge density and ��s , t� is the phase,
the Hamiltonian �24� can be written as follows:

H = �
0

L �J ��s��2

4�
+ ���s��2� +  k

2
− �����s��2�ds .

�28�

The dynamics of the system is governed by the Hamilton
equations for the charge variables ��s , t� and ��s , t�,

	L
	�

= 0 and
	L
	�

= 0, �29�

where

L = − �
0

L

� �t� ds − H �30�

is the Lagrangian of the system and 	 /	�·� is a variational
derivative. By introducing the dissipation function

F = �
1

2
�

0

L

��tr��2ds , �31�

the Langevin equation for the position r��s , t� can also be
written in the variational form

	F
	�tr��s,t�

= −
	Htot

	r��s,t�
. �32�

Equations �29� and �32� should be considered with the peri-
odicity condition �19� and the closure condition �20� for the
position r��s , t�. Now the periodicity conditions for the charge
variables take the form

��s� = ��s + L�, ��s� = ��s + L� , �33�

and the normalization condition in �10� becomes

1

L
�

0

L

� ds = � . �34�

To take into account the periodicity conditions �19� and �33�,
we can expand the curvature and the charge variables in the
Fourier series

�s��s,t� =
2

L �1 + �
j�2

cj�t�cos2js

L
�� , �35�

��s,t� = ��1 + �
j�2

� j�t�cos2js

L
�� , �36�

��s,t� = �
j�2

� j�t�cos2js

L
� . �37�

Note that the first harmonic with j=1 does not contribute to
the Fourier expansion �35� due to the closure condition �20�.
The coefficient � in the expansion �36� takes into account the
normalization condition �34�. Different harmonics in the
Fourier expansion �35� represent different types of shape de-
formation. For example, the term with j=2 determines an
elliptic deformation, the term with j=3 represents a triagonal
deformation, etc. �see �14� for more detail�. For the sake of
simplicity we consider only the elliptic deformation of the
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filament �j=2� and restrict ourselves to the case when the
deviations from the circular shape are small and the charge
distribution along the chain is smooth: �c2� , ��2� , ��2��1, �cj�,
�� j�, �� j��1 for j�3. Thus the expansions �35�–�37� reduce
to

�s��s,t� =
2

L
�1 + c�t�cos4s

L
�� , �38�

��s,t� = ��1 + ��t�cos4s

L
�� , �39�

��s,t� = ��t�cos4s

L
� , �40�

where we omitted the subscript in the notations for the Fou-
rier harmonics.

Inserting Eqs. �38�–�40� into Eqs. �25�, �28�, �30�, and
�31�, we get

Leff = −
L

2
��

d�

dt
− H . �41�

Here

H =
2

L
�− 4J�
1 − �2 + 8J��2 + kec

2 − 4���c� �42�

is the effective Hamiltonian with some irrelevant constants
being omitted. In Eq. �42�ke=k−2�� is an effective bending
rigidity of the filament for the case when the charge is un-
formly distributed along the chain,

Hstoch�t� =
L2

42�
0

2 �X Ls

2
,t��

0

s

coss� −
c

2
sin�2s���ds�

+ Y Ls

2
,t��

0

s

coss� +
c

2
sin�2s���ds��ds �43�

is the effective interaction with stochastic forces, and

F =
1

2
b�c�dc

dt
�2

�44�

is the effective dissipative function. The damping coefficient
b�c� has the form

b�c� =
1

4
�

L3

�2�3�
0

2

��2�c,s� + �2�− c,s��ds , �45�

where the notation

��c,s� = �
0

s

sin�2s��sins� +
c

2
sin�2s���ds� �46�

is introduced. Note also that in the derivation of Eq. �43� we
took into account the periodicity in the stochastic terms,
X�s+L , t�=X�s , t� and Y�s+L , t�=Y�s , t�.

Equations of motion for the quantitites �, �, and c follow
from Eqs. �28�, �29�, and �41�–�44� and they have the form

d�

dt
= −

82

L2 J
�


1 − �2
− �c� , �47�

d�

dt
=

322

L2 J� , �48�

dc

dt
= −

22

b�c�L
�kec − 2���� − f�c,t� , �49�

where

f�c,t� =
L2

4b�c�2�
0

2 �X Ls

2
,t���− c,s�

− Y Ls

2
,t���c,s��ds �50�

is an effective stochastic force.
Note that, in terms of the ansatz �38�, the aspherity A,

which is defined by Eq. �16�, can be written approximately
as

A =
L2

82c . �51�

Let us analyze the cases of zero temperature and finite
temperature separately.

A. Deterministic behavior: Zero-temperature limit

In the no-noise case the dynamics of the system is de-
scribed by Eqs. �47�–�49� with X=Y =0. The system under
consideration is characterized by the control parameter

� =
�def

�disp
, �52�

which is the ratio of the deformation energy �i.e., the energy
shift due to the charge-bending interaction�

�def = 2

L
�2

�2�2

ke
�53�

with respect to the dispersion energy

�disp =
1

2
2

L
�2

�J . �54�

A simple analysis shows that, when the charge-curvature
coupling is weak such that the control parameter ��1, these
equations have a unique stationary point �=0, �=0, and c
=0. This state corresponds to a uniformly distributed charge
along the circular filament.

When ��1 there are two equivalent stationary states

� = 0, �
 = 

1 −
1

�2 , c
 =
2��

ke
�
, �55�

which represent an elliptically deformed filament with a spa-
tially nonuniformly distributed charge. The two solutions c


correspond to two mutually orthogonal directions in which
the filament may be elongated. Note that in the case of soft-
ening charge-curvature interaction ���0� the maxima of the
curvature and the charge density coincide, while in filaments
with hardening charge-curvature interaction ���0� the cur-
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vature of the filament is minimal �the filament is locally
more flat� in the places where the charge density is maximal.

B. Charge-charge correlation effects

The aim of this section is to clarify the role of interaction
between charge carriers in the formation of polygonally
shaped aggregates in the zero-temperature limit. In describ-
ing the charge-charge repulsion effects, we will use an on-
site interaction in the form

Hel-el =
1

2
V�

n

��n�4, �56�

which in the continuum limit in terms of the charge variables
�27� reads

Hel-el =
1

2
V�

0

L

�2ds . �57�

The parameter V in Eqs. �56� and �57� characterizes the
strength of the interaction. Thus the Hamiltonian of the sys-
tem with account of charge-charge interaction effects has the
form

Hcc = H +
1

2
V�

0

L

�2ds , �58�

where the Hamiltonian H is given by Eq. �28�. Inserting in
Eq. �58� the ansatz �38�, we get

Hcc =
2

L

�− 4J�
1 − �2 +
L2

42V�2�2 + 8J��2 + kec
2 − 4���c� .

�59�

An inspection of the function �59� shows that in the zero-
temperature limit the spatially uniform charge distribution
along the circular filament becomes unstable for the control
parameter �52� satisfying the inequality

� � 1 +
L2

82�
V

J
. �60�

Thus the elliptic shape more easily arises in short filaments
with strong charge-bending interaction � and relatively weak
interaction between charge carriers V.

In what follows we will assume that the charge-bending
interaction is strong, �def��2V /4, and for the sake of sim-
plicity will neglect the interaction between charges.

C. Stochastic behavior: Finite temperature

We will study the role of thermal fluctuations by using the
formalism of the Fokker-Planck equation. To this end we
introduce the probability distribution density

P�c,�,�;t� = �	„c − c�t�…	„� − ��t�…	„� − ��t�…	 . �61�

As seen from Eqs. �26� and �50� the stochastic forces f�c , t�
represent Gaussian white noise with the mean value

�f�c,t�	 = 0 �62�

and the two-time covariance given by

�f�c,t�f�c�,t��	 = 2F�c,c��	�t − t�� , �63�

where

F�c,c�� =
D

b�c�b�c��
L3

83�
0

2

���− c,s���− c�,s�

+ ��c,s���c�,s��ds . �64�

It is straightforward to obtain �see, e.g., �17�� that the
Fokker-Planck equation which describes the time evolution
of the probability distribution �61� of the set of Langevin
equations �47�–�49� in the Stratonovich sense has the form

�tP = − ���P��H� + ���P��H� + �c P

b�c�
�cH�

− �c�P���cF�c,c����c�=c� + �c
2�PF�c,c�� , �65�

where the Hamiltonian H is given by Eq. �42�. Inserting into
Eq. �65� the relations

F�c,c� =
T

b�c�
, ��cF�c,c���c�=c =

T

2

d

dc
 1

b�c�
� , �66�

which follow from Eqs. �45�, �46�, and �64�, we obtain the
equation for the probability distribution P�c ,� ,� ; t� in the
form

�tP = − ���P��H� + ���P��H� + �c P

b�c�
�cH�

−
T

2
�c�P

d

dc
 1

b�c�
�� + T�c

2 1

b�c�
P� . �67�

It is interesting to note that if the stochastic force f�c , t� in
the Langevin equations �47�–�49� is replaced by

fmod =
1


b�c�
��t� , �68�

where ��t� is a white noise with

���t�	 = 0, ���t���t��	 = 2D	�t − t�� , �69�

we obtain the same Fokker-Planck relation for this new set of
Langevin equations. This means that the stochastic equations
�47�–�49� with f�c , t� from Eqs �26� and �50� or from Eqs.
�68� and �69� are equivalent.

The stationary probability distribution �i.e., the solution of
the Fokker-Planck equation �67� for t→�� is given by

Pst = C
b�c�e−H/T �70�

where C is a normalization constannt.
Assuming that c�1, one can expand the function a�c ,s�

from Eq. �46� into a Taylor series and, keeping only leading
terms, one can obtain that

ln b�c� � const + 0.04c2. �71�

Combining Eqs. �42�, �70�, and �71� we obtain that the ef-
fective bending rigidity �i.e., the coefficient in front of c2 in
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the expression H+ 1
2 ln b�c�� becomes temperature dependent

and takes the form ke−0.002LT. We will assume that the
persistence length lp=ke /T satisfies the inequality lp
�0.002L, and in what follows we will neglect the tempera-
ture dependence of the effective bending rigidity.

By integrating the stationary probability distribution �70�
over the charge variables � and � �note that �� �−1,1� be-
cause by definition the charge density ��s , t��0� we obtain a
reduced distribution

P�c� =
1

N�0

/2

d� sin �e� sin � cosh�
�

J
c cos ��

�exp�−
�

2�
�

J
�2

c2� , �72�

where

N = �
−�

�

dc�
0

/2

d� sin �e� sin � cosh�
�

J
c cos ��

�exp�−
�

2�
�

J
�2

c2� �73�

is the normalization constant. In Eqs. �72� and �73� �
=42J� / �LT� is a dimensionless inverse temperature. The
function P�c� gives the probability of finding the curvature c
in the interval �c ,c+dc� irrespective of the magnitude of the
charge variables.

There are two areas in the parameter space �� ,�� where
the probability density �72� as a function of the curvature
parameter c behaves qualitatively differently, as is shown in
Fig. 1. These two areas are separated by the curve

� =
�



2 + �I1��� + L1����
��I0��� + L0���� − 2�I1��� + L1����

, �74�

where In��� is the Bessel function of imaginary argument
and Ln��� is the Struve function �18�. Below this curve �i.e.,
in the unshaded area of the phase diagram presented in Fig.
1� the distribution is single modal. The probability density
�72� in this case has a maximum at c=0 �see Fig. 2 when
T=0.3�. This means that the most probable conformation
state of the filament is a circle. Above the curve �74� �i.e., in

the shaded area of Fig. 1� the probability distribution is bi-
modal. The function �72� has two equivalent maxima 
cm
�see Fig. 2 when T=0.05 and 0.1�. In this case the most
probable state is an elliptically deformed filament. The two
maxima correspond to two mutually orthogonal directions of
elongation.

It is straightforward to obtain that in the vicinity of the
curve given by Eq. �74� the most probable value of the chain
curvature is determined by the expression cm=����
Tc−T
where Tc��� is a critical temperature �i.e., the solution of Eq.
�74�� and ���� is some coefficient. Thus, in the framework of
our ansatz �38� the transition of the filament in the fluctuat-
ing environment to a noncircular conformation may be con-
sidered as a noise-induced phase transition of the second
kind.

By using the probability distribution �72� and the expres-
sion �51� for the filament aspherity, one can calculate the
equilibrium value of the normalized aspherity,

�A	
�A0	

=
M1�T�
M1�0�

, �75�

and the equilibrium value of the relative standard deviation
of the aspherity,


���A�2	
�A	

=
M2�T�
M1

2�T�
− 1, �76�

where Mn�T� are the moments defined as

Mn�T� = �
−1

1

P�c��c�ndc, n = 1,2, . . . . �77�

IV. NUMERICAL STUDIES

The dynamics of the filament is described by the
Schrödinger equations

i
d

dt
�l = −

�H

��
l
* �78�

and the Langevin equations
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1
����
Β
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Ξ

FIG. 1. Probability distribution phase diagram. In the shaded
area the probability distribution is bimodal and in the unshaded area
it is unimodal.
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FIG. 2. Probability density distribution of c variable for J=ke

=1, �=0.25, �=2, �=105, and three different values of the tem-
perature: T=0.05 �dashed curve�, 0.1 �thin curve�, and 0.3 �thick
curve�
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�
d

dt
r�l = −

�H

�r�l

+ R� l�t� , �79�

with the Hamiltonian H being defined by Eq. �3�. Thus the
conformational dynamics is considered in an overdamped
regime with � being the friction coefficient. In accordance
with the fluctuation-dissipation theorem, the standard devia-
tion D is proportional to the temperature T; thus D=�T.

The set of stochastic differential equations �78� and �79� is
solved numerically by the use of an implicit Euler method,
with �=0.5 as implicitness parameter, which is the trapezoi-
dal rule. The integration of the stochastic term is done by
using the strong Taylor scheme of first order described in
Ref. �19�. The time step chosen for running the simulations
was �t=10−2. To verify the precision of the results we com-
pared with data obtained for different time steps. The value
of the position and charge of the lth particle at time tn=n�t is

denoted Zn
l = �xl ,yl ,�l�n, F�Z�n� denotes the deterministic part

of Eqs. �78� and �79�, and Wn= (Xl�tn� ,Yl�tn� ,0) is the corre-
sponding component of the white noise. Thus the numerical
scheme becomes

Zn+1
l = Zn

l + ��F�Z�n+1� + �1 − ��F�Z�n���t + Wn

�t .

�80�

The above system of nonlinear equations is implicit and it is
solved by a hybrid method provided by the MINPACK FOR-

TRAN library and the random numbers present in the white

noise are generated by the RANLIB library, both accesible
from the netlib repository in Ref �20�.

In our paper we were mostly concerned with the role of
thermal fluctuations in the process of the shape transforma-
tions. Therefore in our simulations we have chosen a set of
parameters for which in the zero-temperature limit the most
energetically favorable state is an elliptically deformed fila-
ment. Without loss of generality, in this section we show the
results of the numerical simulations produced for L
=36 units and charge density �=0.5. A system of this size
provides a clear visualization of the properties of the model
and does not demand too much computational time. Systems
of the same size but with smaller values of the charge density
�but still inside the area where the elliptic state is stable� in
the presence of thermal fluctuations require more time to
reach an equilibrium state. As initial condition for the elec-
tric charge density �l we use the same magnitude at all
points, corresponding to an equally distributed charge den-
sity. Initially, all the lattice points were symmetrically dis-
tributed along the circle of an appropriate radius. In what
follows we have chosen the damping coefficient � and the
bending rigidity k equal to unity. Moderate changes in these
parameters do not modify significantly the dynamics of the
system. To avoid big stretching of the nearest bonds of the
chain we fix the parameter �=105. We considered the cases
of both hardening and softening electron-curvature interac-
tion.
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FIG. 3. Top panel: Equilibrium shape of the chain �solid line� against the initial circular shape �dashed line�. Bottom panel Charge
distribution ���2 �solid line� and curvature � �dashed line� for different noise intensity D=0.01 �a�, 0.2 �b�, and 0.4 �c� in the case of
hardening, �=0.5, �=−4, �=105, and J=0.25 at time t=4000. The gray shadow represents the local charge density in the chain.
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A. The case of hardening charge-curvature interaction

Typical final shapes of the filament for three different val-
ues of the noise intensity D=0.01, 0.1, and 0.2 are shown in
Fig. 3 where the averaged aspherity decreases as the noise
increases. Figure 4 shows the time evolution of the aspherity
A for three different values of the noise D. The left panel
shows the overall behavior of this quantity �including tran-
sient processes� while the right panel presents its steady state
evolution. As is seen from Fig. 4 the thermal fluctuations
excite the dynamics of the system and facilitate the transition
to an anisotropic state. Clearly the transient period shortens
when the temperature increases.

It is remarkable that in the case of weak noise, D=0.01, in
the aspherity time evolution there exists a small plateau for
600� t�1000 �see Fig. 4�. This plateau corresponds to an
intermediate conformation of the filament when it takes a
triangular shape �see Fig. 5�.

The mean value of the saturation aspherity �A	 after tran-
sient time t1 which we define as

�A	 =
1

t2 − t1
�

t1

t2

A�t�dt �81�

decreases as the temperature increases �see Fig. 6� and the
filament takes on a less anisotropic shape, while the relative
standard deviation


���A�2	
�A	

�82�

is an increasing function of temperature. Here the aspherity
variance is given by the expression

���A�2	 =
1

t2 − t1
�

t1

t2

�A�t� − �A	�2dt . �83�

The shape of the aggregate is well defined when

���A�2	 / �A	�1. There is a critical value of the noise inten-
sity Dcr when the relative standard deviation reaches the
value 1 /2. Then for D�Dcr the shape fluctuations are so
strong that they become chaotic. For �=0.5 this value is
approximately Dcr�0.4.

Thus one can conclude that in the case of hardening
charge-bending interaction the mean-field approach intro-
duced in �14� works well in the weak-noise limit.

�i� The ellipselike conformation is the equilibrium state of
the shape evolution.

�ii� In the equilibrium state the charge distribution is non-
uniform along the chain and the charge is concentrated in the
places where the filament is more flat.

�iii� The triangular conformation of the filament exists but
it is a metastable state.

Strong noise �i.e., high temperature� qualitatively changes
the conformational dynamics keeping the shape of the fila-
ment almost circular, while in the zero-temperature limit it
takes on an elliptic shape. The corresponding quantities are
shown in Fig. 6. Comparing these relations with the numeri-
cal data, also presented in this figure, one can conclude that
there is a qualitative agreement between the analytical results
obtained in the framework of the simple ansatz �38� and the
results of numerical simulations.

B. The case of softening charge-curvature interaction

By carrying out the simulations described for the harden-
ing charge-bending interaction ���0� we took into account
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FIG. 4. Aspherity versus time for different noise intensity, D
=0 �thin line�, 0.05 �thick line�, and 0.25 �dotted line�. The param-
eters used are �=0.5, �=−4, �=105, and J=0.25. �a� Full time
simulation 0� t�4000; �b� detailed behavior after transient time
2000� t�4000

x

y

Κl

�Ψl�
2

10 20 30 36
l

0.4

0.8

1.2

Κl,�Ψl�
2

FIG. 5. Intermediate shape of the filament at time t=500 �left
panel� and the corresponding charge distribution ���2 �solid line�
and curvature � �dashed line� along the chain �right panel� for D
=0.01. The parameters used are the same as in Fig. 3.
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solid line� and its relative standard deviation 
���A�2	 / �A	 �thick
dashed line� versus noise from the simulations and as stationary
solution of the Fokker-Planck equation �thin solid and dotted line,
respectively� in the case of hardening, �=0.5, �=−4, �=105, and
J=0.25.
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that the presence of charge increases the bending rigidity
locally and the large bending deformations do not occur.
Therefore there was no necessity to introduce any bending
energy penalty and in Eq. �4� we put �max→�. However, the
filaments with softening charge-bending interaction are much
more flexible and large deformations with the bending angle
�l� /2 appear rather easily. To avoid excessive bending we
carried out our numerical simulations under the assumption
that the maximum possible bending angle �max is equal to
 /2. This means that we let �max=
2 in Eq. �4�.

Comparing the time evolution and the mean value of the
aspherity in the case of softening charge-bending interaction
presented in Fig. 7 and 8 with the case of hardening charge-
bending interaction �Figs. 4 and 6�, we see that they are
qualitatively similar. However, the equilibrium shapes of the
filaments �Fig. 9� and the charge distribution �Fig. 10� after
transient time t=4000 differ drastically. The softening
charge-bending interaction initiates kink formation while
smooth shapes of filaments are characteristic for the case of
hardening charge-bending interaction. Almost all the charge
is concentrated now in the areas of the kinks. It is interesting
to notice that small and moderate thermal fluctuations facili-
tate the kink formation while for sufficiently high magni-
tudes of the noise intensity filaments takes on almost circular
shape and the charge distribution is more uniform along the
filament �see Figs. 9�d� and 10�d��.

We carried out a few runs of numerical simulations for a
set of parameters that satisfy the inequality �60�. We found
out that for small enough V the filament shape behavior and
aspherity behavior are essentially the same as in the case of
no interaction between charges. More detailed studies of ef-
fects of charge-charge interactions will be presented else-
where.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated the role of thermal
fluctuations on the charge-induced conformational transfor-
mations of closed semiflexible molecular chains. We have
found that the results obtained in the mean-field approach
�14� are rather robust in systems where the presence of
charge hardens the local chain stiffness, the charge-curvature
interaction counteracts the collapse of the chain and the
mean-field picture survives. In the presence of white noise
when the charge density and/or the strength of the charge-
curvature coupling exceed a threshold value, the spatially
uniform distribution of the charge along the chain and the
circular, cylindrically symmetric shape of the chain become
unstable. In this case the equilibrium state of the system is
characterized by a spatially nonuniform charge distribution
along the chain which takes on an ellipselike form. The tran-
sition to an anisotropic spatially nonuniform conformation is
analogous to the phase transition of the second kind in the
condensed matter physics.

In the case of hardening charge-bending interaction the
charge and curvature distribution along the filament are
smooth while for softening charge-bending interaction there
are spontaneously created kinks where the smooth filament
structure is disrupted. Almost the total amount of excess
charge is concentrated in the vicinity of the kinks.
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